5

Fourier Series in Diffusion
and Wave Phenomena

One of the main fields of application of Fourier series is in finding the solution
of processes governed by linear partial differential equations where the space
derivative is the Laplacian. In such processes, it is the local curvature of the
disturbance which is subject to the time development as determined by the
time derivatives. If the latter is a first-order derivative, we have the diffusion
equation [Eq. (5.1)], where the rate of change in temperature is proportional
to its local curvature. In the wave equation [Eq. (5.15)], it is the acceleration,
the second time derivative, which responds linearly to the disturbance curva-
ture. If the boundary conditions are periodic with some period 2L, Fourier
series will provide an expansion of the solution in terms of a basis of Laplacian
eigenfunctions with exactly these periodicity conditions.

The diffusion equation is analyzed in Section 5.1, and in Section 5.2 the
wave equation is presented. The boundary conditions proposed in the latter
are those of a fixed-end string rather than those of a vibrating ring, say.
This is done partly because of the general interest of constrained elastic media
and partly for the opportunity it provides to illustrate the use of the Fourier
sine series. In both cases we present several approaches: (a) the Green’s
function treatment, (b) normal modes, (c) hyperdifferential time-evolution
operators, and (d) for the wave equation, traveling waves. In Section 5.3 we
apply Fourier series to describe a mechanical lattice composed of an infinity
of masses and springs.

5.1. Heat Diffusion in a Ring

In this section we derive the diffusion equation from physical con-
siderations about heat conduction. This partial differential equation is easily
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196 Part II - Fourier and Bessel Series [Sec. 5.1

solved by Fourier series, the theta function of Section 4.4 being the Green’s
function for the system. Operator methods, introduced later, will be seen to
abbreviate the derivation.

5.1.1. The Heat Equation

A homogeneous conducting medium whose temperature f(x, ¢) is a
function of the point x at time ¢ will satisfy the heat equation

S 1) = @V, ), @ = s 5.1)

where a is the diffusion constant given in terms of the conductivity «, mass
density u, and the specific heat s of the medium. Equation (5.1) states that
the rate of change of temperature with time at a point is proportional to the
local curvature of the function in the direction of concavity (“‘nature hates
vacua”). The constant a? describes the time scale of the diffusion process.

We shall sketch how Eq. (5.1) arises in a one-dimensional (““thin rod”)
medium. See Fig. 5.1. The heat flux ®(x, t) across a point x (in calories per
unit time) is observed to be proportional to the temperature gradient at x
(in °K per unit length), i.e., ®(x, ) = —« 9f(x, t)/0x, the proportionality
constant x being the conductivity of the medium and the minus sign indicating
that heat flows from warmer to colder regions. The net flux of heat into the
segment extending from x to x + Axis @ (x, 1) = O(x, 1) — O(x + Ax, 1)
and results in a change of temperature. The number of calories needed to
raise the rod element mean temperature by 1°K is given by the specific heat s
of the material times the linear mass density w times the length Ax. Thus
D_oi(x, t) = s Ax 9f(x, t)/ot. Equating the expressions involving the tem-
perature, dividing by Ax, and letting Ax — 0, one obtains Eq. (5.1) in one
dimension. The basic arguments outlined here can be repeated for heat
diffusion in two, three, or more dimensions.

The differential equation (of parabolic type) in Eq. (5.1) still has to be
complemented by boundary conditions in time and space in a manner which

Fig. 5.1. Temperature and heat flux in
a thin rod.
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will be brought out below. In what follows, we shall absorb the constant a?
into rescaling the time units. In the resulting formulas, the diffusion constant
a can be regained by replacing ¢ by a?t.

Equation (5.1) for the temperature f(x, ¢) can be multiplied on both
sides by the heat capacity C (in calories per °K per unit volume), giving an
identical equation for p(x, t) == Cf(x, t); the amount of heat per unit volume
Equation (5.1) then describes a compressible but nonevanescent fluid which
can represent such diverse processes as the interpenetration of one liquid by
another or the diffusion of neutrons through matter.

5.1.2. Solution by Fourier Series

The boundary conditions we use here to illustrate the use of Fourier
series describe a conducting ring of unit radius, where x represents the arc
length. A ring with arbitrary radius does not introduce any novel features: it
can be easily treated using the form (4.132) for the series. The boundary con-
ditions in space are thus f(x, ) = f(x + 2m, t), and the temperature function
can be taken to represent a vector f(z) in the function space described in
Chapter 4. Equation (5.1) thus becomes the vector equation (with rescaled
time)

d 2:
A0 = V(). (5.2)

In the ¢p-basis, (5.2) implies the equality of the corresponding column-vector
coefficients. Those on the left-hand side are f,(t) == df(¢)/dt, while those on
the right can be found from (4.51). Hence (5.1) plus the periodic boundary
conditions are equivalent to the set of equations

fn(t) = _nzfn(t), ne%Z. (53)

[The process of finding (5.3) from (5.1) is analogous to the uncoupling of the
lattice equations of motion in Chapter 2. From the second-order partial
differential equation (5.1) we thus find an (infinite) set of first-order ordinary
differential equations. The x and ¢ derivatives are now uncoupled. The
interaction operator is the Laplacian V2, in correspondence with the second-
difference operator which appeared in Chapter 2.]

The general solution of (5.3) is of the type ¢, exp(—n?t), with arbitrary
constants ¢, which are fixed when the initial conditions in time are specified.
For t.= t,, let the temperature be f(z,) with Fourier components f;,(¢,). The
constants ¢, can then be uniquely evaluated in terms of the initial condition
yielding

£ = filt) expl—n®t — 1)],  neZ, (5.4)
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as the general solution of (5.3). The original temperature function f(x, 7) can
finally be regained as the Fourier synthesis of (5.4), i.e., by Eq. (4.32a),

flx, 1) = @m)12 > f(¢) exp(inx). (5.5)

ney

5.1.3. The Green’s Function and Fundamental Solutions

We note that the Fourier coefficients (5.4) of f(x, ) are the product of
the Fourier coefficients of f(x, #,) times exp[ — n(¢ — t,)], which are the Fourier
coefficients of the theta function 6(x, ¢t — t,) in Eq. (4.64), times (27)*/2. The
temperature function (5.5) will thus be the convolution of the two, i.e.,

Jx, 0) = [0, ¢ — 10) * (-, 10)](x)

- f " ax0(x — Xyt — )Y, 1), (5.6)

This expression has a very transparent physical meaning. To bring this
out, consider the special (unphysical) case where the initial conditions are
f(x', t,) = 8(x" — x,), i.e., an infinitely hot spot at x,. The temperature
thereafter is then given by (5.6) as the fundamental solution

f(xa t) = 0(x — Xo» t— to), t > to, (57)

which is a theta function centered at x,. See Fig. 4.13.

If the initial temperature distribution were a finite collection of hot
points at x;, that is, >; f;8(x — x;), the resulting solution would be a sum of
0’s centered at x; with coefficients f;. An arbitrary initial condition f(x, #,)
can be seen as a sum—a la Riemann, gone to the limit—of &8’s distributed
over x' € (—m, m] with coefficients f(x', #,) dx’. The resulting temperature
distribution is then (5.6). The theta function is thus the Green’s function for
diffusive processes; it appears as an integral kernel in (5.6) and relates the
initial condition at (x’, #,) and its effect at (x, #). It has the properties:

(a) Itis an even function of space: 0(x, t) = 6(—x, t), which means that,
preserving their time ordering, the points of cause x” and the points of effect x
can be exchanged. This is the principle of reciprocity.

(b) The effect of x" on x depends only on their relative separation x’ — x,
as can be seen in the corresponding functional dependence of the Green’s
function: the system is translationally invariant.

(c) The system is invariant under inversions since the Green’s function
depends only on the absolute value |x" — x|. (Compare with Section 2.2.)

The theta function 6(x, ¢t — t,) is infinitely differentiable in x and in
t > t, as its Fourier series shows. Since the solution f(x, ¢) is a convolution
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of the initial condition with 6(x, ¢t — ¢,), it follows that f(x, ¢) itself will also
be infinitely differentiable in the half-plane (x, ¢), ¢ > ¢,.

5.1.4. The Time-Evolution Operator

From the above discussion it follows that the integral kernel given by
the Green’s function 6(x, ¢) acts as a linear operator,

() = G(r — 1) (20), (5.8)

mapping the space of generalized functions which are the initial conditions
f(t,) of the system on the space of infinitely differentiable functions for
t >t

Since any linear combination of solutions of (5.1) is also a solution to
this equation, the set of all solutions of the diffusion equation constitutes a
linear vector space.

Further properties of the Green’s function are that total heat is preserved
and that the set of Green’s functions for all # > ¢, constitutes a semigroup of
integral kernels. This we leave to the reader to verify in Exercises 5.1 and 5.2.

Exercise 5.1. Show that the total heatr of the system

0= f :1 dxf (%, ) (5.9)

is a constant, independent of time. This can be proven (a) by substitution of (5.6)
into (5.9), exchange of integrals, and the property (4.68) of the theta function, or
(b) by calculating the time derivative of (5.9), using the governing equation (5.1)
and showing that the evaluated integral is zero due to the periodic boundary
conditions in x. Another proof is suggested in Exercise 5.5.

Exercise 5.2. Let the temperature function at time ¢ be due to initial condi-
tions at ¢; and these in turn a consequence of an earlier ¢, temperature distribution.
Show that time evolution is a transitive process in the sense that

f(‘at) = 9('!t - tl)*f('ytl) = 0(,t_ tl)* 0('9t1 - tO)*f(sto)
= 0('9 t— tO)*f(" tO)’ (5.10)

which is satisfied since
f dx'0(x — x', t)0(x" — x", 1) = O(x — x”, t1 + t3). (5.11)

Equation (5.11) can be proven either directly or by the product of the Fourier
coefficients of the 8’s in convolution. This associates to every time ¢ > 0 an integral
kernel with (a) the composition law (5.11), (b) identity given by the Dirac 8, and
(c) associativity. For negative time ¢ the §-function series is strongly divergent, so
the general inverse for the set of integral kernels does not exist. We have thus a
semigroup of time-evolution operators.
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Exercise 5.3. Can a temperature distribution of the form of a rectangle or a
triangle function be regressed in time at all? Find a condition so that a tempera-
ture distribution allows time regression to — 7. Can any temperature distribution
be regressed in time indefinitely ? Work in the Fourier basis only.

Exercise 5.4. As Eq. (5.1) manifestly allows, search for its separable solutions
falx, 1) = Xo(x)Tw(2), n specifying the separation constant. By introducing this
form into (5.1) and recalling the space boundary conditions, the solutions
found will be of the form exp(—r?t + inx) for ne Z. These are the ‘“normal
modes’’ for heat diffusion in the ring. The most general solution will be a sum
over n of these solutions with coefficients determined from the initial condi-
tions. Show that one regains the form (5.6) with the series development of the
theta function.

5.1.5. Hyperdifferential Form of the Evolution Operator

The solutions of the diffusion equation lend themselves to a general
presentation by hyperdifferential operators. One can formally expand the
solution of (5.1) using the Taylor series in ¢ around ¢, as

101y = 3 ot 2 s = exp| (¢ = 1) | e

(5.12)

Now, on the space of solutions of (5.1), the operator 9/d¢ is equivalent to V2,
and hence (5.12) can be expressed as

Jx, 1) = expl(t — 1) VZ1f(x, 1), (5.13)

which should then be equivalent to the time evolution (5.6) in terms of an
integral kernel. [Compare with Eq. (2.38b).] It would appear that (5.13) can
hold only when the initial temperature distribution is infinitely differentiable.
Actually, (5.13) holds weakly for any generalized function f(x, #,) as can be
seen when f(x, t,) = 8(x — x,) so that f(x, t) is the fundamental solution
(5.7). The weak equality between the integral convolution (5.6) and the
hyperdifferential operator in (5.13) was established in (4.100).

We can state quite generally that the exponentiation of a second-order
differential operator is weakly equivalent to the action of an integral kernel,
both representing here the time-evolution operator G(¢ — #,) in Eq. (5.8).
In Eq. (4.129) we characterized operators represented by diagonal matrices in
the ¢p-basis as convolution operators. Since any powers or sums thereof are
diagonal in this basis, G(7) = exp(7V?) is clearly such an operator.

Exercise 5.5. Prove total heat conservation using the hyperdifferential form
of the solution. Note that (5.9) can be written as Q = (1, f(-, 7)), where 1 is the
unit constant function in (—m, 7]. The Parseval identity then allows us to write
O as an inner product in the ¢-basis, which is manifestly time independent.
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Exercise 5.6. Prove the semigroup property (5.11) from the corresponding
time-evolution operator product

G(t)G(r2) = G(n + 12),  G(0) =1, (5.14)

which in turn is an immediate consequence of the hyperdifferential form (5.13).

Lest the solution of the diffusion equation appear trivial, let us remark
that the greater practical difficulties in solving Eq. (5.1) appear when realistic
boundary conditions are imposed as curves in the (x, z)-plane and when
sources of heat or fluid are present. The latter case will be taken up in Part I11
in studying applications of the Fourier and Laplace transforms. The study of
some boundary conditions will be taken up in the context of separating
coordinates for the diffusion equation as an application of canonical trans-
forms in Chapter 10. Meanwhile, two simple boundary conditions which can
be reduced to the periodic case are suggested in Exercises 5.7 and 5.8.

Exercise 5.7. Assume one has a conducting rod extending between two
“cold walls> at x = 0 and x = 7 which maintain the conditions f(0, ) = 0 =
f(m, t) for all ¢. Since exp(1V?) commutes with 1, [see Eqs. (4.121)], the ““method
of images”’ is applicable. It consists of choosing a rod to extend between x = —m
and 7, the segment (—m, 0) being the negative mirror image of the temperature
function in (0, 7), i.e., f(—x, to) = —f(x, to). This relation is preserved for all 7.
The description can be made using the sine Fourier series, Egs. (4.134).

Exercise 5.8. Assume now that the conducting rod has insulated ends at
x = 0 and 7. As there the heat flux is zero, of(x, t)/0x|x=0,, = 0 are the space
boundary conditions. The ‘““method of images’” with functions symmetric under
inversions will use the cosine Fourier series (4.135). The reader may find it worth-
while before solving Exercises 5.7 and 5.8 to browse through Section 5.2 where the
method of images is used for the wave equation with similar boundary conditions.

5.2. The Vibrating String

Fourier series are well suited for the description of wave phenomena in
elastic media with Cartesian boundaries. The disturbance or characteristic
f(x, 1) of the medium we want to analyze will be governed by the wave
equation

¢~ 2 éat—zﬁf(x, 1) = V3(x, t), (5.15)

where ¢ is aconstant which will turn out to be the propagation velocity.
Equation (5.15) has to be complemented by boundary conditions in space and
time, typically :

f(x,t) = 0 for x € B, f(x, to) = u(x), f(X, t;) = v(x), (5.16)
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where B is a fixed boundary enclosing a finite region in x-space. Here we
shall concentrate on finding the solutions of (5.15)-(5.16) describing a finite
string with fixed ends. Various other boundary conditions and regions will be
presented in Chapter 6.

5.2.1. The Wave Equation

Consider a thin string of linear mass density p stretched with tension =
between two points and allowed to undergo longitudinal or small transverse
vibrations. Let f(x, ¢) be the elongation from equilibrium of the point x of the
string at time ¢. Isolating the string element which extends from x to x + Ax
(Fig. 5.2, where the elongation is represented as transversal), we see that it is
subject only to a net restitution force in the direction of the displacement. At
x the force is — 7 9f(x, t)/ox, while at x + Ax it is 7 (X', 1)/0X'| x = x4 ax-
The net force is the sum of these two and will produce an acceleration
—0%f(x, t)/ot? on the mass puAx of the element. Using Newton’s laws,
dividing by Ax, and letting Ax — 0, we obtain the wave equation (5.15) with
¢? = 7/u. Dimensional analysis shows that ¢ has units of velocity. We could
absorb this constant into a redefinition of time units, but we prefer here to
leave it appearing explicitly in the ensuing developments.

The boundary conditions which describe a string of length L with fixed
endpoints are

£0,) =0, f(L,{)=0 forallz (5.17)

5.2.2. Eigenfunctions of the Laplacian

Since this chapter deals with applications of Fourier series, we can
expect that the use of this series will solve the problem posed by (5.15)—(5.17).
In fact it does: if we follow the approach used in Section 5.1, we will find
that the partial differential wave equation is reduced to a set of ordinary
(second-order) differential equations. We would like to present here a line
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Fig. 5.2. Elongation and tension of an
elastic string element.

xX+Ax




Sec. 5.2] Chap. 5 - Diffusion and Wave Phenomena 203

of reasoning which is somewhat different and which, although leading to the
same results, will generalize more easily to the solution of the systems posed
in Chapter 6, where the boundary conditions are those of a two-dimensional
rectangular, circular, annular, or sectorial membrane.

It is readily verified that in the Hilbert space of functions #,%(0, L)
with the inner product (4.134c) on (0, L) and boundary conditions (5.17), the
operator V2 is hermitian. For twice-differentiable g, f, integrating by parts,

@ v = | drgloy L3
oo T [o2()]* (%)
=g 5, ‘f dx[Tx“] %
~ {0+ L2 - [ b+ [ [ 2] 1o
=0+ (V2g, f)z. (5.18)
Moreover, V2 can be shown to be self-adjoint. The set of all its eigenvectors
V() = Ma(x) (5.19)

will constitute a complete orthogonal basis for that space (Section 4.7).
The solutions of the differential equation (5.19) have the general form

a sin[(—A)Y2x] + b cos[(—A)}2x], a, b, e%. (5.20)

If we impose the boundary conditions (5.17) at x = 0, we obtain the restric-
tion b = 0, while the condition at x = L requires (—A)}2L = 0 mod =, i.e.,
(=ML = nm, ne Z, or A = —(nw/L)%. The eigenfunctions of V2 are thus
sin(nmx/L) in £,%(0, L), and we can use n to label the eigenfunctions. The
values +|n| and —|n| yield the same function, while for n = 0 we obtain
the zero function. Hence we let n = 1, 2, 3, . ... The constant a in (5.20) may
depend on n and ¢, so we let a = a, ().

We can thus expand any function f(x, t) € %20, L) satisfying (5.15) in
terms of eigenfunctions of V2 with these boundary conditions as

fGx, 1) = QILY? D a,(t) sin(nrx/L), (5.21a)

neg +

introducing the constant (2/L)*2 in order to match exactly Egs. (4.134).
These allow us to solve for the a,(z):

a,(t) = (2/L)}2 JL dxf(x, t) sin(nmx/L) = f,°(¢). (5.21b)

Equations (5.21) do not yet describe solutions of the wave equation (5.15);
they are only an expansion tailored for this equation plus boundary condi-
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tions. Now, upon requiring that (5.21a) be a solution to-(5.15), we find a set
of uncoupled ordinary differential equations for a,(z) to satisfy, viz.,

0= (6—288_:2 — Vz)f(x, t)

=it > (c‘2 %22 -5 /\n) f.9(t) sin(nmx/L). (5.22)

neg t
Linear independence of the eigenvectors of V2 now implies that each of the
coefficients of the series (5.22) is zero. The f,°(¢) are thus determined up to
two arbitrary constants, which we write, introducing for later use an ““initial
time” t,, as

fno(t) = bn Sin[wn(t - to)] + ¢y COS[wn(l‘ - tO)]» bm Cn 6%7 (5233)
w, = nmc[L, neZ. (5.23b)

5.2.3. Initial Conditions and Green’s Function

The series (5.21a) with coefficients (5.23) is the most general solution of
the problem. It remains now to fix the constants b, and ¢, in terms of
boundary conditions in time. Any pair of initial conditions on f{(x, t) or its
time derivatives for fixed ¢ will be suitable. The most common pair is the
initial elongation f(x, t,) and velocity f(x, t,) for #,. By (5.21b) and (5.23) this
determines the b, and ¢, in terms of the sine Fourier coefficients of the two
initial conditions. We find

bn = fno(to)/wm Cp = fno(to), (524)

so that upon substitution of (5.24) into (5.23) and (5.23) into (5.21a), the
solution can be expressed as

S, 1) = QLM D> witsinwy(t — 10)] sin(amx/L)f,(to)

ney +
+ QI D cos[wa(t — to)] sin(umx/L)£(to)
negxt
= > Gox, t — t)fote) + D G, t — 16)f,%(to)
neF+ neg+

= (T_.G(t — to), £(10))° + (—H-—x(-;(t — o), £(10))°

L L
= f dx'G(x — x', t — to)f(x', to) + f dx'G(x — x', t — to)f(x', to).
0 0

(5.25)

The last two equalities deserve comment. The second term in (5.25) contains
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two sums, each of which gives rise to an inner product (4.134c). The first one
involves f(z,) with a vector with sine Fourier components

G.o(x, t — ty) = (2/L)"2w; ! sin[w,(t — t,)] sin(nmx/L)

= (T_, REe¢~tx:113el) o — G o(x ¢ — t;)*. (5.26a)

We recognize in the expression (5.26a) the sine Fourier coefficients of the

rectangle function of width 2¢(r — ¢,), height 1/2¢, and centered at x as

obtained in Eq. (4.135). [Recall the remark about the negative “phantom”

function in (—L, 0).] The second sum in (5.25) involves the time derivative
of (5.26a),

G2t — to) = (2/L)V'2 cos[w,(t — to)] sin(nmx/L)
= JZ(-H-xi-c(t—to)s + Tx—c(t—to)s)no, (526b)

which we recognize as the coefficients of two &’s sitting at x + ¢z and x — ct.
The last equality in (5.25) expresses the convolution of the vector f(,),
represented by the function f(x', t,), initial velocity, and (5. 26a) which is
the Green’s function for the system at hand,

G(x — x', 7) = REw129(x — x), (5.27a)
and that of the initial condition f(x’, #,) and (5.26b),
G(x — x',7) = H8(x' — (x + ¢7)) + 8(x' — (x — ¢7)], (5.27b)
integrated over x'.

5.2.4. Fundamental Solutions

To bring out the meaning and properties of Green’s function we shall
consider the fundamental solutions below. [Compare these results with those
in Section 2.3.] Assume that initially the string starts from rest with a 8-/ike
“shape” at some point X, ie., f(x', %) = 0, f(xX', to) = 8(x" — x,). The
ensuing development of the string shape is then G(x — x,, ¢ — #,). Equation
(5.27b) tells us that the 6é-pulse splits into two pulses traveling along x =
Xo + c(t — to), i.e., they keep their é-shape at all times and propagate with
velocity + c. Such a pulse is shown in Fig. 5.3(a). Assume next that the string
starts from zero elongation, f(x, #,) = 0, but with a é-pulse in velocity at
some X, f(x, t;) = 8(x — Xx,), as if impelled by a sharp, localized blow. The
string shape will then develop as G(x — xo, t — ), shown in Fig. 5.3(b);
it is a rectangle function which broadens with velocity ¢. The most general
solution with initial conditions given by f(x, o) and f(x, t,) will be an inte-
gral—a generalized linear combination—of these fundamental solutions.

Exercise 5.9. Verify that (5.27b) is the time derivative of (5.27a). You can
write R@?:Y(x) = O(ct — x)@(ct + x), where © is the Heaviside step function
[6(y) = 1 for y > 0, ©(0) = %, O(y) = 0 otherwise for ye(0,L)], and use the
fact that the derivative of a discontinuous function is a Dirac 3.
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We recognize the following properties of the Green’s function, which
hold for the lattice of Section 2.2 or the diffusive systems in Section 5.1:
(a) reciprocity, (b) translational, and (c) inversion invariance. In addition,
the system exhibits (d) causality: a disturbance at (x,, #,) can affect only those
points x at future times ¢ which are inside the cone |x — xo| < c|t — t.
Both the Green’s function and its derivative are zero outside this region.

Exercise 5.10. Let the string elongation at time ¢ depend on conditions at
time ¢; and these in turn on still earlier initial conditions at time #,. Express this
transitive property in terms of an integral relation between the Green’s function
and its derivative for times ¢, #;, and #,. Refer to Exercises 2.13 and 5.2 and ahead
to Exercise 5.17.

5.2.5. Traveling Waves and Reflection Phenomena

As Figs. 5.3(a) and (b) suggest, something rather dramatic happens
when the disturbance traveling with velocity + ¢ hits the endpoints of the
string. These are kept fixed, and the pulse undergoes a reflection, propagating
backwards after the collision. Rather than unearth this phenomenon from the
Green’s function, we can show rather easily what the mechanism is. For this
it is sufficient to note that if g~(y) and g=(p) are two arbitrary functions,

S, t) =g7(x —ct) + g-(x + ct) (5.28)

will be a solution of the wave equation (5.15). In fact, the most general
solution can be built in this way: a right-moving disturbance plus a left-
moving one. The boundary conditions (5.17) impose g~(—ct) = —g*=(c?)
and g7 (L — ct) = —g=(L + ct), which can be combined as

g”(y)=-g(-y)=g"2L + y). (5.29)

t t
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This means that the right-moving disturbance must be equal to the negative
of the inverted left-moving disturbance, and both must be periodic with
period 2L. Any string movement will be a superposition of two such opposing
traveling waves. A pulse moving “alone” along the string (Fig. 5.4) is mathe-
matically accompanied by an infinity of companion pulses spaced by 2L
moving in the same direction and by a second infinity of negative mirror
pulses traveling in the opposite direction. When the pulse ““hits” the wall, it
superimposes with its mirror counterpart. As the pulse proceeds into the
mirror region, the mirror pulse becomes real and travels through the string.
Reflection has taken place. In Fig. 5.5 we show in detail the reflection process
undergone by a moving square pulse.

Exercise 5.11. Show that the above description of companion and mirror
images of any string shape is contained in the Green’s function formalism from
Eq. (5.25) onward. Note that Eq. (5.25) can be rewritten as

f&x, 1) = (2L)'”2[ D> s — fowite®) — 2 (hosy™ —ﬁﬁwn‘cn‘)],

ne% + neZ +
(5.30a)
[0 = L), = fu(to), (5.30b)
sp*t = sin{nm[c(t — to) + x]/L}, cn® = cos{nmc(t — to) + x1/L}.
(5.30c)

Note that for ¢ = ¢, this is the sine and cosine Fourier series for functions of
period 2L and that as x«»>—x, sT«>s~ and c¢*«>c¢~; hence f(—x,1¢) =

_f(x9 t)'
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Fig. 5.5. Reflection of a square pulse at a
string endpoint. Either half of the
figure may represent the “‘real”
string; the other will represent its
image.
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Fig. 5.6. String which starts from rest
T with a triangle shape.

Exercise 5.12. Explain the development of a string shape which starts from
rest in terms of superpositions of right- and left-traveling waves. You can guide
yourself with Fig. 5.3(a). Do the same with a string the shape of that in Fig. 5.3(b).

Exercise 5.13. Consider a string which starts from rest with a triangular
shape as in Fig. 5.6 as a superposition of right- and left-traveling shapes. Show
that the string motion is indeed the-one depicted in the figure. At what time does
the string recover its initial shape ? Did such a “fundamental period’’ exist for the
finite lattice (Chapter 2)?

5.2.6. Normal Modes

The description of the fundamental solutions following Eq. (5.25) was
made assuming that the initial displacements and velocities were Dirac §’s.
As in Section 2.3, we can now investigate the string motion when the initial
conditions are given by the V? eigenvectors, (2/L)'? sin(nwx/L), n€ Z*, in
£2(0, L). The solutions thus obtained are the normal modes of the string and
can be read from the second member of (5.25), letting the f£,°(,) and £,°(¢,)
be different from zero one at a time. Setting ¢, = 0 for simplicity, we define

@n(x, 1) = (2/L)*'? sin(nmx/L) cos w,t, w, = nmc/L (5.31a)
oa(x, 1) = (2/L)*'2 sin(nmx/L)w; * sin w,t, neZ+, (5.31b)
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The most general solution to the string problem is a linear combination of
these, as (5.25) can be rewritten in the form

fo )= 2 foonx 1) + D feux, 1). (5.32)

neg + negx+

[Note the perfect analogy with (2.48) and (2.50).] A few normal modes (5.31a)
have been drawn in Fig. 5.7. Some of their relevant properties are the follow-
ing: (a) The ¢,(x, t) represent waveforms which start from rest and maximum
elongation, while the ¢,(x, ¢) start from the equilibrium shape with maximum
velocity. (b) The nth normal mode presents n — 1 nodes (i.e., zeros) within
the interval (0, L), not counting the endpoints. (c) They oscillate with angular
velocities w,, Eq. (5.23b), which are discrete and directly proportional to n.
[In terms of the finite lattice Brillouin diagram of Section 2.3, they are all in
the “linear” (low-frequency) region, where sin z ~ z.] (d) The period of
oscillation of the nth fundamental mode is

T, = 2nfw, = 2Lnc = Ty/n, Ty = 2L/¢ (5.33)

and is a submultiple of the fundamental period T,. The original form of any
string disturbance is thus reproduced after a time 7,, the nth component
mode having completed # full oscillations. See again Fig. 5.6. (¢) Each normal
mode is a sinusoidal string shape modulated by an oscillating function of
time: they are the separated solutions of the wave equation [i.e., of the form
X (x)r,(t)]. In fact, we would have found precisely these had we set out
proposing separated solutions for this equation, the separation constant
being proportional to »2% (f) The odd-» modes are even under inversions

Fig. 5.7. The first four normal modes for
a vibrating string that starts
from rest [Eq. (5.31a) for n =
1, 2, 3, and 4].




210 Part IT - Fourier and Bessel Series [Sec. 5.2

through the string midpoint x = L/2. Even-n modes are odd. (g) Under time
inversion, the ¢,(x, ) are even, while the ¢,(x, ¢) are odd.

Exercise 5.14. Analyze the string motion in Fig. 5.6 in terms of the consti-
tuent normal modes. Show that only the odd modes appear. This can be predicted
on the basis of the symmetry of the initial conditions with respect to the string
midpoint.

Exercise 5.15. Analyze the translation and inversion symmetries of Fig.
5.6: (a) periodicity in time under translations 7, and 7,/2, and in space under
translations by L and 2L; (b) inversions in time through ¢ = 0, Ty/4 ,and Ty/2,
and in space through x = 0, L/4, and L/2.

5.2.7. Two-Component First-Order Differential Form of the Wave Equation

The solutions of the wave equation on the finite string can also be
expressed in terms of hyperdifferential operators acting on the initial condi-
tions. This follows a similar treatment of the diffusion problem in Eq. (5.13)
but with the introduction of a space of velocity functions f(x, ¢) in addition
to the functions f(x, ¢) which describe the string elongation. [This is analogous
to the phase space in Section 2.6.] We consider f and f as the components of
a two-vector §(x, ¢) so that the wave equation (5.15) appears as a two-
component equation:

HE(x, 1) = %C(x, 1), (5.34a)
(fxe ) (01
C(x, £) = (f.(x’ :))’ H = (czvz @). (5.34b)

The first component of (5.34a) states that f(x, t) = 9f(x, t)/ot, while the
second component rewrites (5.15) in terms of £ and f.

5.2.8. Hyperdifferential Form of the Evolution Operator

Following step by step the formal development (2.108)-(2.113) (with
M—1,k—c% A—V?, we can expand the time development of the
elongation and velocity functions as

A
45, ) = exp| @ ~ 10 g |65 Dl

L4 = expl(t — 1M, 1)
Lo
5 (1 0

= { 0 1) cosh[e(t — t,)V]

0 1
+ (C2V2 0) (cV)~1sinh[e(r — to)V]}C(x, to)
G — 10)8(x, to)- (5.35)

I

Il
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(Note that only positive powers of V actually appear in this equation.) This
defines Green’s (i.e., the time-evolution) operator for the wave equation.
Note that the operator entries of the 2 x 2 matrix G(¢ — t,) involve only
even powers of V, so that the symmetry properties of f(x, ) and f(x, t)
under inversions or translations in x are not affected [Eq. (4.121)]. Hence the
boundary conditions (5.17) for the string of length L are unchanged, as we
should expect, under time evolution.
For f(x, t), the first component, Eq. (5.35) tells us that

f(x, 1) = {(cV) = sinh[e(z — 10) VI (x, t0)
+ cosh[e(t — 1) V1f(x, to), (5.36)

while the second component is only the time derivative of this. Comparison
of the hyperdifferential form (5.36) with the corresponding integral kernel
form (5.25) of the time-evolution operator implies the (weak) equivalence

cosh(+V)f(x) = [ f(x + 7) + f(x — D] (9,37)

This is obvious by now due to (4.124) and cosh z = (e® + e~?)/2. The second
equivalence implied is

V-1 sinh(-V)f(x) = } f ), (5.38)

xX=1

which is the antiderivative in 7 of the first.

Exercise 5.16. Verify (5.38) in more detail (a) in comparison with (5.25)-
(5.27a), (b) as the antiderivative in 7 of (5.37), and (c) as the antiderivative in x
of sinh 7V using sinh z = (e®* — e~?)/2. Note that due to the absence of ann = 0
mode in the string, V-1 exists as an operator on the space of vibrating string
solutions. Compare this to the Lanczos smoothing (4.62).

Exercise 5.17. Verify the composition of the time-translation operators
Gt — )Gt — to) = G(t — 1) (5.39)

(a) formally as the exponential of H, (b) as the 2 x 2 matrix with operator entries
involving hyperbolic functions of V, (c) by the matrix representatives of G in the
Fourier basis [Egs. (5.26)], and (d) by the integral kernels (5.27). Recall Exercise
5.10;

5.2.9. Kinetic and Potential Energy in the Vibrating String

The last aspect we want to present of the vibrating string system is that
of the energy present in the motion. This bears considerable resemblance to
the energy in a vibrating finite lattice (Section 2.5) and some differences as
well. In deriving the relation between f(x, ¢) and the energy, we deal again
with string elements Ax and then let Ax — 0 and integrate over x. All
quantities describing observables are assumed real.
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The kinetic energy of the string element is one-half the mass pAx
multiplied by the square of the velocity f(x, ¢). The whole string therefore has
kinetic energy

EX(t) = 1u f dx| f(x, 1))

@), £0):
=du D onlwyt cos(w)fi — sinwn)fil% (5.40)

neg+

In the second step we have used the inner product (4.134c) and in the third
the corresponding Parseval identity, the sine Fourier coefficients being given
by the time derivative of (5.25). For simplicity we have set 7, = 0, £,° = £,°(0)
and £,° = £,°(0).

The potential energy of the same string element is found by multiplying
the net force acting on it, —c?Vf(x, t), times the position «f(x, ) integrated
from « = 0 (equilibrium) to « = 1 (actual position),

E*(t) = —pc f * df e, VS, 1) f o de

= —Iuc(f(r), VA(1))3

= duc® > (nm/L?|w;* sin(wa0)f; + cos(a)fi?% (5.41)
neg +

where we have followed steps analogous to the derivation of (5.40).

5.2.10. Total and Partial Energy Conservation

The total energy in the string can be found after some algebra as

E=EXt) + E*(1) = (ue*n®2L%) > n*(|f3* + 02|31 = 2 En
negx+ nex+

(5.42)

The end result is only a function of the initial condition coefficients, and

hence E is a constant of motion. Note in particular that the partial energies

corresponding to the constituent normal modes [the sum of one term in (5.40)

and the same-n term in (5.41)], denoted by E, in (5.42), are separately con-

served as well. Thus there is no energy exchange between the normal modes.

(All these features have their exact counterpart in the finite lattice whose
energy characteristics occupies Section 2.5.)

An interesting point to notice is the factor »? inside the sum in (5.42).

If the total energy is to be finite, £,° has to decrease faster than n~%? with

growing n (while £,° only faster than n~/2). This means that if f(x, 0) has a

discontinuity, the total energy of the string is unbounded. This is due to the
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fact that the normal mode energies are proportional to »2, turning a con-
verging partial-wave sum into a diverging energy sum. Discontinuities in
velocity are allowed, however, as they produce only trapezoid-like string
shapes.

Exercise 5.18. Follow Section 2.5 in showing that the normal mode and
total energies are constant without the explicit calculation undertaken in (5.40)—
(5.42).

Exercise 5.19. Follow Section 2.6 in finding other constants of motion for
the vibrating string.

Exercise 5.20. Pick up the idea mentioned in Exercise 2.61 of defining a
sesquilinear inner product in the string elongation—velocity space (5.34):

E@, §) = (f1, £2)2 — c2(fy, V2£,)2. (5.43)

As the spectrum of V2 is strictly negative, the inner product (5.43) is positive. With
respect to this product, the operator in (5.34b) is self-adjoint, and the time-
evolution operator G in (5.35) is unitary.

Exercise 5.21. Consider the string to be immersed in a viscous fluid so that
a velocity-dependent damping term is present. The governing equation is then

€2 2 S 1) + T a e, 1) = Vi, D). (5.4

In finding the solutions of this equation with the boundary conditions (5.17),
note that the V2-eigenfunction methods developed in this section apply with the
difference that the angular frequencies (5.23b) will have a constant imaginary
part, damping the oscillation, and a real part that is an ‘“‘effective’” oscillation
frequency. The tools for this analysis have been given in Section 2.1. Lower
frequencies become overdamped, while higher ones remain oscillatory. They are
no longer multiples of a fundamental frequency, and hence the medium becomes
dispersive, i.e., signals lose their shape during propagation as long waves lag
behind short ones. This provides a rough model for the propagation of electro-
magnetic waves in an ionized medium.

Exercise 5.22. The boundary conditions (5.17) could be done away with as
in analyzing a vibrating metal ring. The V2 eigenfunctions are then exp(inmx/L),
n e &% ; the different approaches to the string can be applied to the ring with little
conceptual difference.

Exercise 5.23. Assume the boundary conditions in space are that df(x, t)/dx
be zero at x = 0 and L. Show that the spectrum and eigenvalues of V2 are the
set of nonnegative integers and that the eigenfunctions are cosines. The relevant
expansion is thus the cosine Fourier series (4.136). Find the Green’s function.
Describe disturbances in terms of traveling waves: the mirror image disturbance
is now equal in sign to the ‘“‘real’’ one.
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Exercise 5.24. Let the boundary conditions be ““mixed”’: f(0, ¢) = 0 and
9f (x, t)/ox|x= = 0. The problem is equivalent to that of an ordinary string with
disturbances which are even with respect to reflections across x = L/2, the “real”
string extending from zero to L/2. The freedom one has in choosing boundary
conditions in the eigenvector procedure is that the constant term in the integration
by parts (5.18) vanishes.

5.3. The Infinite Lattice

The study of finite N-point coupled lattices occupied Chapter 2 and was
solved by the use of finite-dimensional vector space and transform methods.
Since then, we have let N — co and found Fourier series. In this section we
shall study the vibrations of a lattice composed of an infinity of discrete
points: fundamental solutions, normal modes, and traveling waves. They are
all N — oo counterparts of the finite case. An ““effective’” propagation velocity
for disturbances will be defined.

5.3.1. Equations of Motion

By infinite lattice we mean a system with a countable infinity of masses
coupled by harmonic oscillator two-body interactions or their electric circuit
analogues (Fig. 2.5). The equations governing such systems were found in
Section 2.2. In the simple lattice, i.e., the case when all masses M and springs k
are equal, when viscous and external forces are absent and only first-neighbor
interactions are taken to exist, the governing system of equations for the
disturbances f,(¢) of the nth mass point is (2.26), i.e.,

Mfy = k(far1 = 2fn + fao1) = k(L) (5.45)

The only difference between (5.45) and (2.26) is that here the number N of
masses is unbounded and »n can take any integer value (n € &). We expect
that the coupled set of equations (5.45) will uncouple if we consider { f;} e
to be the Fourier coefficients of a function f(x) and perform Fourier synthesis
on (5.45). The second-difference operator A becomes multiplication by
—4 sin? x [see Egs. (4.72)], turning Eq. (5.45) into

Mf(x, t) = —dk sin®(x/2)f(x, t). (5.46)

This is one ordinary differential equation in # for every value of x € (—=, =].
Once f(x, t) is found as determined by (5.46) with the usual initial conditions,
the f,’s can be found by Fourier analysis (4.17b). The important point is that
the “original function’ and ““ partial-wave coefficients” are here, respectively,
{fo()}tnear and {f(x, )} xec-n.m- Their roles are reversed with respect to the
ones they had in the last two sections.
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Fig. 5.8. Brillouin diagram for the oscillation angular frequencies of an infinite lattice:
The allowed w’s extend from zero to 2(k/M)*? and are doubly degenerate for
all0 < w < 2(k/M)*2,

5.3.2. Solution

If at time #z, we state that the lattice has elongations and velocities
{fato)s fu(to)hnez, the solution to (5.46) will be determined, by the usual
arguments, as

f(x, 1) = f(x, to) cos[w(x)(t — 15)] + f(x, to) sin[w(x)(t — t0)]/w(x), (5.47a)
w(x) = 2(k/M)*2|sin(x/2)| = w(@r — x), (5.47b)

where f(x, t,) and f(x, t,) are the Fourier syntheses of the initial conditions.
These solutions are directly comparable with their finite-lattice counterparts
(2.28), except for having a continuum of partial waves labeled by x. As x is
periodic with period 2w, its range and ““center” conform to Brillouin’s con-
vention. The angular frequencies w(x) can be plotted in a Brillouin diagram
(Fig. 5.8), which is the continuous counterpart of Fig. 2.10. The oscillation
frequency w(x), note, is not simply proportional to x, as it was for the
vibrating string. This, we shall see, implies that the medium is dispersive:
signals lose their shape as they propagate along the lattice.

5.3.3. Green’s Function

The general solution to the lattice equations (5.45) can now be found as
the Fourier analysis of (5.47), which is a sum of products of functions. As
before, its structure will be that of a convolution between the initial conditions
and the Green’s function for the system and its time derivative, the latter ones
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being the Fourier analyses of the factors sin[w(x)(# — #,)]/w(x) and
cos[w(x)(t — to)] in (5.47), viz.,

= Z_@ Gonlt — t)flte) + 2. Ganlt — to)fulto), (5.482)

mey

Gpm(7) =(@2m)1 f_ﬂ dx[w(x)] 1 sin[w(x)7] exp[—i(rn — m)x], (5.48D)

Gpm(7) = (2m)~1 f_ﬂ dx cos[w(x)7] exp[—i(n — m)x]. (5.48¢)

We have defined G, ,(7) using matrix notation, as this leads to the vector
equation

f(t) = G(t — to)f (1) + G(t — to)f(2o), (5.49)

in complete analogy with the expressions (2.29) for finite lattices, (5.8) for
heat diffusion, and (5.35) for the vibrating string. It has in common with these
systems the properties of (a) reciprocity, (b) translational invariance, and
(c) invariance under inversions, as follows from noting that G, ,.(7) is
exclusively a function of |[n — m|, m and n being the sites of cause and effect
along the lattice. Indeed, as [w(x)]~* sin w(x) is an even, real function of x,
it follows that its Fourier synthesis is an even, real function of the index. As
we shall see, causality, valid for a continuous medium with a definite propaga-
tion velocity, does not strictly hold here.

5.3.4. ‘““Effective’’ Propagation Velocity

We now turn to the explicit calculation of the Green’s functions and its
time derivative, Egs. (5.48b) and (5.48c). The integral gives rise to a transcen-
dental function, Bessel’s function, which is studied in Appendix B. The result
can be written as

Grn(7) = Joen-m(2(k/M)*27), (5.50)

while G, ,(7) itself can be written as the r-integral of (5.50) and explicitly
computed by its Taylor series. In Fig. 5.9 we have plotted (5.50) for n = 0,
integer m, and = in a positive range. A lattice which starts from rest (f = 0)
with one mass out of line with unit elongation will progress in time as shown
in the figure. The disturbance propagates symmetrically on both sides of the
initial elongated mass point as Jy(z) = J_5(2) for k € Z. (Fig. 5.9 should
be compared with Fig. B.1, where rea/ values of the index are plotted.) At
time = = 0 J(0) = 0 for all k except Jo(0) = 1, so at t = ¢, (5.49) is identi-
cally satisfied. Fig. 5.9 can be seen to resemble—in a neighborhood of
7 = O—the corresponding Green’s function derivative for a finite lattice in
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Fig. 5.9. The Green’s function time derivative G, (7). This represents the motion of the
mass points in a lattice which starts from rest with the zeroth mass displaced.
Time is given in units of (M/4k) /2,

Fig. 2.8(a). The resemblance ends when the finite lattice points antipodal
to the initial disturbance start to have a significant elongation, as then the
motion propagates around the finite lattice but extends indefinitely along the
infinite one.

It may seem paradoxical that there is actually an infinite propagation
velocity for signals in the lattice. For small z, J,,(z) ~ (2/2)?*/(2k)! # 0, as
can be seen from the Taylor expansion in (B.7). Hence every mass point in
the lattice feels the disturbance instantaneously. A ““physical” lattice of
masses joined by springs, of course, does exhibit a finite propagation velocity
due to the necessarily massive springs. The nature of the Bessel function,
however, allows for a working definition of a propagation velocity. As Fig. 5.9
suggests, at points far from the disturbance focus, the elongation increases
slowly up to a point where it starts oscillating. This change of response
happens at a time given approximately by the first zero of the Bessel function.
In Chapter 6, Fig. 6.6, we have plotted the zeros of the Bessel function.
For large orders it can be shown [e.g., Watson (1922, Section 15-81) and
Abramowitz and Stegun (1964, Eq. 9.5.14 and the references therein)] that
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the first root of J,(x) has the asymptotic value k + 1.8557571k3 +
1.033150k %3 + ..., k— 0. A given mass point at » units on either side of
the disturbance (for » large) crosses this equilibrium point at a time = =
n(k/M)~*2, as given by (5.50) and defines thus an ““effective” propagation
velocity of (k/M)'? in units of interparticle separation per unit time. [A
different justification of this estimate and the treatment of dispersion is given
by Weinstock (1970), Merchant and Brill (1973), and Jones (1974).]

Exercise 5.25. Consider pth-neighbor interactions through spring constants
k, along the lines of the first part of Section 2.4. Show that the only change in the
formulas in this section involves the angular frequency w(x), which instead of
(5.47b) becomes

o) = 2[ko/4M + f_i (k,/ M) sinz(px/z)]m, (5.51)

in complete analogy to (2.64). The Green’s function now becomes rather com-
plicated to calculate.

Exercise 5.26. Out of (5.51) we can contrive a lattice where w(x) = cx. This
will lead to a nondispersive lattice which can be used to propagate signals without
shape loss. Replacing 2 sin?(«/2) by 1 — cos «, the problem is to find the appro-
priate k,’s. Cosine Fourier analysis of ¢2x2 provides the answer.

5.3.5. Normal Modes

The normal modes for the infinite lattice can be defined, as before, as the
time development of the eigenfunctions of the second-difference operator A
in (5.45) or (5.46). These are the vectors of the Dirac 6-basis [recall Eq.
(4.127)]. If we let the initial conditions be §, first for the elongation and then
for the velocity, the corresponding normal mode solutions will be given by
(5.47) for 8(x — y) and Fourier analysis, namely,

¢yt (t) = (2m) Y2 cos ny cos[w(y)(t — 1o)], (5.52a)
¢4~ (¢) = (2m)~ 2 sin ny cos[w(¥)(t — to)], (5.52b)
@ *(t) = (2m) =12 cos ny sin[w(y)(t — to)]/w(p), (5.520)
¢~ (1) = (2m)~ 2 sin ny sin[w(p)(t — f0)]/w(y), (5.52d)

where we have taken real and imaginary parts following the nomenclature of
the finite lattice case (2.48). The only difference, clearly, is that the normal
modes now form a continuous set labeled by y € (—, 7]. Equations (5.52)
represent standing waves of wavelength A, = 2#/y in units of interparticle
separation [compare with (2.53)] and oscillation angular frequency w(y).
The shortest wavelength which can be carried by the lattice happens at the
edge of the first Brillouin zone, y = =, and is A, = 2 interparticle separa-
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tions. In this mode, two neighboring particles oscillate in opposite directions.
Beyond the first zone (|y| > 7) we have no effectively shorter wavelengths
for the same reason as for the finite lattice in Fig. 2.13.

Exercise 5.27. Find the normal mode solutions (5.52) proposing separable
solutions for the equation of motion (5.45), i.e., solutions of the form f,(¢) =

v(n)7(2).

Exercise 5.28. The initial condition (2m)~ /2 exp(—imy) substituted into
(5.48) should yield the normal mode solutions. Perform this derivation by the
Bessel generating function Eq. (B4). As only even-order Bessel functions will
appear in the sum, use Gx(z, t) + Gp(—z, t). The real and imaginary parts of the
result will match Eqgs. (5.52).

5.3.6. Traveling Waves

The last family of vibration modes examined for finite lattices were
traveling waves [Eqs. (2.54)]. Here, they appear as

Pi=(t) = 2m)~ Y2 sin[ny F w(y)( — to)l/w(y), (5.53a)
¢h=(t) = ¥ (2m) =2 cos[ny F w(y)(t — to)], (5.53b)

exhibiting a propagation velocity
v,© = tw(y)y = £2(k/M)"|sin(y/2)|/y (5.54)

in units of interparticle separation per unit time. (See Fig. 2.15.) Again, as for
finite lattices, the main features are that longer wavelengths have higher
propagation velocities (in spite of having lower oscillation frequencies; see
Fig. 2.14 to dispel this apparent paradox). Shorter wavelengths propagate
slower—hence signal dispersion occurs. The lower limit for velocities is
2(k/M)*2/m for y = m, while the upper one is (k/M)'? for y = 0. Not
surprisingly, (k/M)''? was found to be the “effective” propagation velocity
from the Green’s function. The instantaneous response of the whole lattice to
any localized disturbance stems mathematically from the expansion of a
localized function in terms of “frozen” traveling waves for ¢ = #,. Each
component extends over the whole lattice, and, as time is allowed to flow, the
sum—initially zero everywhere except at the disturbed site—becomes non-
vanishing as the different constituent waves move at their own pace.

The production of a continuous elastic medium out of a discrete, infinite
lattice proceeds as in Section 3.4: we view the lattice from an increasing
distance so that only the correspondingly longer partial waves are significant.
All of them have, with increasing accuracy, the same propagation velocity,
as we are in the “linear” region of the Brillouin diagram near y = 0. In the
limit, we regain the characteristics of causality common to wave phenomena
in one dimension.
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Fig. 5.10. Brillouin diagram for the
oscillation angular frequencies
of the molecular~diatomic infi-
; n nite lattice with a spring/mass
=7k 0 % ratio of 1:2.

Exercise 5.29. Consider molecular and diatomic infinite lattices following
Section 2.4 and the present description. Show that the oscillation frequency
Brillouin diagram appears as in Fig. 5.10.

Exercise 5.30. Show in greater detail how Eq. (5.45), for decreasing inter-
particle separation, becomes the wave equation of Section 5.2. Would a molecular
or diatomic lattice behave differently (exhibiting birefringence, for example)?

Exercise 5.31. Examine the energy in the vibration of a lattice along the
lines of Section 2.5. There are no significant differences except normal modes
and traveling waves have infinite energy.





